A Bayesian Factorised Covariance Model for Image Analysis
نویسندگان
چکیده
This paper presents a specialised Bayesian model for analysing the covariance of data that are observed in the form of matrices, which is particularly suitable for images. Compared to existing generalpurpose covariance learning techniques, we exploit the fact that the variables are organised as an array with two sets of ordered indexes, which induces innate relationship between the variables. Specifically, we adopt a factorised structure for the covariance matrix. The covariance of two variables is represented by the product of the covariance of the two corresponding rows and that of the two columns. The factors, i.e. the row-wise and column-wise covariance matrices are estimated by Bayesian inference with sparse priors. Empirical study has been conducted on image analysis. The model first learns correlations between the rows and columns in an image plane. Then the correlations between individual pixels can be inferred by their locations. This scheme utilises the structural information of an image, and benefits the analysis when the data are damaged or insufficient.
منابع مشابه
Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملComparison of ML and OLS Estimators in Discriminant Analysis of Spatially Correlated Observations
The problem of supervised classification of the realisation of the stationary univariate Gaussian random field into one of two populations with different means and factorised covariance matrices is considered. Unknown means and the common covariance matrix of the feature vector components are estimated from spatially correlated training samples assuming spatial correlation to be known. For the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013